Reverse
Engineering
Malware
Dynamic Analysis
of Binary Malware |

p—
F-Secure. Q¥

Dynamic analysis

" Code is executed on physical machine or emulator
= Covers code that is actually executed
" Code execution is analyzed

= Analysis at various levels
= CPU instructions
" CPU exceptions (interrupts, page faults etc.)
= CPU memory access
= OS system calls
= OS API’s
= OS high-level activity (filesystem, registry etc.)
= Network activity

—
7 F-Secure. Q¥

Dynamic vs. static
analysis

" Problems with static analysis
= Cost of reversing
" Code obfuscation
= Coverage

" Problems with dynamic analysis
" Execution path depends on environment
= Analysis logic visibility
= Performance (emulators)
= Scalability (hardware)

—
F-Secure. Q¥

Dynamic analysis
tools and techniques

" Tracing and logging utilities (Dynamic Analysis I)
= Debuggers (DAI)

= Emulators (DA 1)

= |nstrumentation frameworks (DA 1)

=" Memory forensics (DA II)

—
F-Secure. Q¥

Tracing and logging
utilities

" Basic troubleshooting and system administration utilities can also
be used in malware analysis

= |ots of interesting action can be logged: network, filesystem,
registry

= Most of the utilities are non-intrusive

—
F-Secure. Q¥

Utilities: Procmon

" Procmon (from Sysinternals) is
a light-weight tool for

dynamic analysis

= Aflexible process monitor

" File system
= Registry

" Process/thread activity

= Rich filtering possibilities

& Process Monitor - Sysinternals: www.sysinternals.com 1Ol x|

File Edit Ewent Filer

Tools Cptions Help

BHd | KBE | vA® | &5 | |&E/4A0M0

Time ... | Process Mame | PID| Operation | Path -
12:46... & calcexe 5400 &5 Process Start

12:46.... % calc.exe 5400 &% Thread Create

12:46... [T cale.exe 5400 BuﬂueryNamelnfo...E:\WINDDWS\systemBE\calc.e:-ce

12:46... & calcexe 5400 &Y Load Image AN DOWS apstem32healc. exe

12:4E.. |5 calc.exe 5400 &% Load Image CAWINDOW S apstem32hntdll. dil

12:46... [T cale.exe 5400 BuﬂueryNamelnfo...E:\WINDDWS\systemBE\calc.e:-ce

12:46... & calcexe 5400 BuEreateFile LM DOWS WPrefetchhCALC. EXE-02CDAT 34, pf
12:4E.. |5 calc.exe 5400 gtﬂueryStandardl...E:\WINDDWS\F’refetch\C&LC.EXE-D2CD5?3A.pf
12:46... [T cale.exe 5400 BuﬂeadFile CwINDOWwW S PrefetchhCaLC EXE-02C057 34, pf
12:4E.. & calcexe 5400 BAEIDSBFiIe LM DOWS WPrefetchhCALC. EXE-02C0AT 34, pf
12:4E.. |5 calc.exe 5400 E\EreateFile C

12:46:.. |5 caleexe 5400 b Quernfarmatio... C:

12:4E.. & calcexe 5400 BuFiIeSystemCDntmIE:

12:46:... |3 calc.exe 5400 B\EreateFile Ch

12:46:.. |5 caleexe 5400 BhQuenDiectary T4

12:4E.. & calcexe 5400 BtllueryDirectory CA

12:46... [T calc.exe 5400 B\CIoseFile Ch

12:46:.. |5 caleexe 5400 2h CreateFile Cow M DDWS

12:4E.. & calcexe 5400 BtllueryDirectory CAWINDOWS

12:46... [T calc.exe 5400 gtﬂueryDirectory CWINDOWS

12:46:.. [T caleexe 5400 2h CloseFile Cow M DDWS

12:4E.. & calcexe h400 BuEreateFile CAWINDOWS appPatch

12:46.... [T calc.exe 5400 Buﬂuer_l,lDirector_l,l CAWINDOWShdppPatch

12:46:.. [T caleexe 5400 guﬂueryDirectory C:AwIMNDOWS A ppPatch

12:4E.. & calc.exe 5400 B\CIoseFile CAWINDOWS AppPatch

12.46... % calc.ese 5400 gcreateFile

4

Showing 926 of 114 538 events {0.51%)

IE:\WINDDWS\sustem32 _ILI
3
A

| Backed by page file

—
F-Secure. Q¥

Utilities: Wireshark

Free, open-source packet filter and analyzer
Originally known as Ethereal

Lots of supported protocol analyzers

Expressive filtering

B e oo 374 BB aacaF dEHX @

Plugin support s el |

No. . Time Source Destination Protocol | Info
461 6.882976 16.128.134.74 158.127.18.23 Tcp 41163 > http [SYN] Seq=0 Win=5848 Len=8 MS
462 6.888157 158.127.18.23 10.128.134.74 Tcp http > 41163 [SYN, ACK] Seq=8 Ack=1 Win=57
463 6.888193 16.128.134.74 158.127.18.23 Tcp 41163 > http [ACK] Seq=1 Ack=1 Win=5888 Le
464 6.888271 16.128.134.74 158.127.18.23 HTTP GET / HTTP/1.1
465 6.839039 158.127.18.23 10.128.134.74 TCP http > 41163 [ACK] Seq=1 Ack=379 Win=7168
473 7.018217 16.128.134.74 158.127.18.23 TCP 41163 > http [ACK] Seq=379 Ack=362 Win=691
474 7.018487 158.127.18.23 Follow TCP Stream
475 7.018497 16.128.134.74
476 7.018665 158.127.18.23 Stream Content
477 7.018613 16.128.134.74 GET / HTTP/1.1
478 7.819255 158.127.18.23 Host: www.hs.fi
479 7.019267 16.128.134.74 User-Agent: Mozilla/5.8 (X11; Ubuntu; Linux x86 64; rv:10.0) Gecko/20100101

] Accept: text/html,application/xhtml+xml,application/xml;

» Frame 472 (427 bytes on wire, 427 bytes captured) AEEEPELEIE: -1, Gl =05

> Ethernet II, Src: Cisco Se:b5:7f (00:24:97:5e:b5:7f), zizﬁzzigﬁﬂdiggp-gﬂk genlate

> Internet Protocol, Src: 158.127.18.23 (158.127.18.23) cqgkie: Sitevariables=articleFontSize4%30%3BsiteToBeUsed%30nain%3BreadThrea
» Transmission Control Protocol, Src Port: http (88), D

0.9,*/%;0=0.8

HTTP/1.0 200 0K

Age: 34

Date: Thu, 16 Feb 2012 10:40:38 GMT

Expires: Thu, 16 Feb 2012 10:42:31 GMT
Cache-Control: max-age=120

ETag: "KXEFFKNCAJORUUOVW"

Content-Encoding: gzi

Content-Type: text/html;charset=UTF-8
Content-Length: 46017

X-Cache: MISS from igkmel.f-secure.com

@000 T0 4d a2 dc 8 44 00 24 97 5e b5 7T 08 00 45 Q0 X—Cache:Lnukup: HIT‘frnm igkm@1.f-secure.com:3128
0016 ©1 9d 32 8b 60 00 3d B6 08 76 e 7T 12 17 0a 89| CoNnection: keep-alive

0626 86 4a 86 50 a® cb 26 7d 6e ce 5b 17 14 18 80 18
0930 00 Ge f3 85 60 00 61 @1 ©8 8a 70 la @d fb 84 2e

O File: "/tmp/wiresharkXxXxo4p0p... - Packets: 2853 Displayed| ..

—
F-Secure. Q¥

Debugging and
debuggers

= Wikipedia:
® Debugging is a methodological process of finding and
reducing the number of bugs, or defects (...)
= A debugger is a computer program that is used to test and
debug other programs
= Our purpose is different

» The debugger is just a tool to analyze the behavior of
unknown applications

—
F-Secure. Q¥

Common Debugger
Features

= Create a new process or attach to an existing process
= Control the target process execution

" Set breakpoints

" Read and write memory

" Read and write registers and CPU flags

= View the call stack

= View a disassembly of the code

= (View source code)

—
9 F-Secure. Q¥

Kernel-mode & user-
mode memory

OXFFFFFFFF 4

System-space

(Ring 0)
int Ox2e

sysenter
int Ox80

User-space

(Ring 3)

Ox00000000 v

—
10 F-Secure. Q¥

User-mode
Debugging

a

Kernel-mode

Debugger.exe

Target.exe

11

—
F-Secure. Q¥

Remote Kernel-mode
Debugging

// \W
Debugger.exe

Debuggee.sys
Kernel-mode

User-mode

Debuggee.exe

-
12 F-Secure.%g

Target OS (Guest)

Local Kernel-mode
Debugging
\

Target OS

a

Kernel-mode

Ntoskrnl.exe

User-mode
No control over target

machine!

—
13 F-Secure. Q¥

Windbg.exe

GDB “Hardware
Debugging”

/W = Y
A

User-mode
K Debuggee.exe

-
14 F-Secure.%g

a

15

Debuggers: OllyDbg

Graphical debugger for 32-bit Windows (64-bit coming)

Only for user-mode
debugging

Designed for working
without source code

Lots of useful plugins

OllyDbg - calc.exe - [CPU - main thread, module calc]
@ File Yiew Debug Plugins Options ‘Window Help

=Bl x|
=181 x|

Sl x| w[i] T4 U A] L[E[M[T]w]H|c[/[K[B]R]..[s] E=[:H?]
<Module EERT] PUSH 78 «Registers (FPU>
#i012477| . 68 E@1580A1 |PUSH calc.@1@@15ER ThY AENE0ERa
@1@1247C| . ES 470839008 |CALL calc.@i@i27C8 ECY AAA7FFEA
918124811 . 33DB XOR EBX.EBX EDX 7C9@E514 ntdll.KiFastSystemCallRet
BA1812483| . 53 PUSH EBX EBY 7FFDCH@A
01012484 . 8B3D 20180801 MOU EDI,DWORD PTR DS: [<&KERNEL32.GetMo¢ |rop mp@7PRca
B8181248Aa| . FFD? CALL EDI EEFP GBB7?FFF@
A1@1248C| . 66:8138 4D5A |CMP WORD PTR DS:[EAX1,5A4D ESI FFFFFEFF
A1812491| .75 1F JNZ SHORT calc.Pi@i24B2 EDI 7C918228 ntdll.7C910228
#1912493| . 8B48 3C MOU ECH.DUORD PTR DS: [EAX+3C1
A1A12496| . @3C8 ADD ECH.EAX EIP A1812475 calc.{ModuleEntryPoint}
@1A12498 | . 8139 50450006 CMP DWORD PTR DS:[ECK1,4558
A181249E| ..75 12 JNZ SHORT calc.@1@124B2 S ? Eg ngﬁ ggﬁ;ﬁ 325;5555553
818124n@| . AFB741 18 MOUZX EAX.WORD PIR DS:[ECX+181 N B S% BE22 22hit BCFFFFFFFE)
Biaiz4n4| . 3D ABP10PAA CMP EAX.18B Z 1 DS 8823 22hit BC(FFFFFFFF}
A1A12409| .24 1F JE SHORT calc.@i@124CA S @ FS 981D 32hit TFFDFEABCIEEY
@i@124AB| . 3D BRE2EAGE | CMP EAX.20B T B G5 EMa NULL
GiA12408| .74 85 JE SHORT calc.@i@i24B7 D@
@i@12482| > 895D E4 MOU DWORD PTR 8S: [EBP-1C1.EBX
A1612485| ..EB 27 JMP SHORT calc.@1@124DE DO st HINLIEHEE DIl UL,
@1@12487| > 83B? $4@APAAA | CMP DUORD PTR DS:[ECK+841.8E _|EFL a@@@8246 <NO.NB,E,BE,NS.PE,GE,LE)
G1@124BE| .~?6 F2 JBE SHORT calc.@1@124B2 =
BLBIZABE| "6 s T SR g;g ::Ezz B?gonn DiD8 816509104 BRAAADER
@i@124C2| . 3999 FRAAABAR CMP_DUORD PTR DS:[ECX+F81.EBX 21512 enpty 0.8
813 empty B.8
5T4 enpty B.08
Address [Hex dump <G 2] 7C817@77 | RETURN to kernel32.7C817077]
91014000 |63 00 BA B0 91 G0 DA 0D|20 0P DB DA|BA B0 60 0@ |ARAVFFCE| VCI1A228 ntdll.?C910228
61914416 |BA B0 PA PR |40 B OA OA| 53 BA 63 BA |69 BB 43 pp_ | BBO7FFCC| FFFFFFFF
A1A14A20 |61 @A HC PA |63 BP AP AR AR AA @A P4 |2E B BA pp |BOE7FFDA| ?FFDCABE
A1A14A30|A0 @A P4 PA PP GP AP AR 2C @A @A PA | PA G BA AR |BOO7FFD4) 8G54B6ED
A1A14A4A|AQ AR AA AA 3@ AP PA PP A1 AP @A BA @A AA 57 AR |ODO?FFDS | GAGVFFCS
91814058 |58 @9 56 1 |5C B2 5D @2 @7 @3 59 O3 |SE B3 S5n @2 |PPO7FFDC| 86CA7A20 .
91814060 |5B 3 5F @480 6@ B@ 0G| FF FF FF FF FF FF FF FF |B007FFE@| FFFFFFFE End of SEH chain
91814078 |FF FF FF FF|FF FF FF FF|FF FF FF FF 00 00 @@ 0@ |[9007FFE4| 7C839AD8 | SE handler =~
G1914A86 |0 AA A PR PP B BA O EC 15 9@ Bl |00 6 o op |BO07FFES| 7C817388 kernel32.7C817080
A1914@90|2E 4B P4 PA M@ GP AP AR @@ @A FF 94|50 B9 B pp |BOO7FFEC 80000366
A1@14@AA|FF @A @A AA |51 GP AP AR FF @A @A @A |52 6@ GA pp |BOO7FFFA| 00000060
P1P14AEA|FF B9 B BA 53 B8 B 0P| 0P 8@ FF B0 54 68 6@ oa |BAAA?FFF4| BAARAAAA .
|@1A14ACA A8 BB FF GO A8 BA AR FF AR AR OF 8 R AR T BBB?FFF8 | 81612475 |calc.<ModuleEntryPoint> -
Frogram entry point | | Fauzed
'p 3
F-Secure.%g¥

Debuggers:
Immunity Debugger

= Similar to OllyDbg, but adds several nice features such as Python
scripting

4. Immunity Debugger - mapzeroed.exe - [CPU - main thread, module mapzeroe]
File ‘“iew Debug Flugins ImmLib Options Window Help Jobs
OPMEE X MY 1l emtwhcPkbzr

Look in: I [PyScripts

hcwer_analysis P pe_export.py
") example A recvhook.py
I)heap P safeseh.py

I)infoed A strncpy_hook. py
2 davesearch.py

A dltest.py

File name:

Co

IMMUNITY Fies of ype: [EITDTE]

DEBUGGER f’ e

LHeapAl Loc

-
16 F-Secure.%g

" Free, open-source (GPL) source-level debugger

= Multiple targets (x86, AMD64, ARM, PPC etc.)

= | ocal and remote, user -and kernel-mode (Linux KGDB extension)
= Console program

" Graphical frontends: DDD, IDA

= Not really good for binaries

Debuggers: IDA
remote debugger

= Small debugger serverinstalled on a target machine
" |DA as a graphical frontend
= At the moment only good graphical Linux debugger

" Targets: Windows 32/64-bit, Linux x86 32/64-bit, OSX 32/64-bit,
ARM Linux, Android

" Cross-functional: debug for example Windows binaries on Linux

-
18 F-Secure.%g

Windows debug API

= Most Windows debuggers are based on the Debug API
" Implemented by dbghelp.dll

" |nteresting functions
= DebugActiveProcess() to attach to an existing process
= WaitForDebugEvent() to get events
= DebugBreakProcess() to break into a running debuggee

-
19 F-Secure.%g

Debug loop

while (TRUE) {
WaitForDebugEvent (event, timeout);
switch (event->dwDebugEventCode) {
case EXCEPTION DEBUG EVENT:

switch (event->u.Exception.ExceptionRecord.ExceptionCode)

case EXCEPTION ACCESS VIOLATION:
case EXCEPTION BREAKPOINT:

(o02)
}
case LOAD DLL DEBUG EVENT:

(...)

-
20 F-Secure.%g

Context

" The current state of athread is
described by a CONTEXT
structure

" Passed to debug events and
exception handlers

= Contains all registers and flags

= CPU-specific

21

1kd> dt nt!_CONTEXT

+0x000 ContextFlags

+0x004

+0Xx08cC

+0x090

+0Xx09c

+0x0a0

+0x0b8

+0x0bc

+0x0co

+0x0c4

Dro

SegGs

SegFs

Edi

Esi

Eip
SegCs
EFlags

Esp

: Uint4B

: Uint4B

: Uint4B

: Uint4B

: Uint4B

: Uint4B

: Uint4B

: Uint4B

: Uint4B

: Uint4B

—
F-Secure. Q¥

22

x86 memory
segmentation

Segment registers (CS, DS, SS, ES, FS, GS) point to descriptor table
Descriptor table entry referenced by a register defines a segment descriptor
Segment descriptor translates logical address to a linear address

The segment descriptor contains the following fields:
" Asegment base address
" The segment limit which specifies the segment size
= Access rights byte containing the protection mechanism information
= Control bits

Logical address examples: DS:[0x00401121], FS:[0]
Linear address examples: [0x00401121], [0x7FFE0000]

Segmentation not used anymore in modern operating systems (except for a
special purposes, for example Windows exception handling)

—
F-Secure. Q¥

TEB & PEB

®» TEB = Thread Environment Block

= Container for thread-specific things like the exception handler list,
stack pointer, ...

= Windows uses the fs segment to store it (offset 0x18 has pointer to

self)

" mov eax, fs:[0x18]

" PEB = Process Environment Block
= Container for process-specific things like the list of loaded modules
= TEB has a pointer to PEB at offset 0x30

" |mportant when reversing code that
= Enumerates loaded modules (Peb.Ldr)
= Checks for an attached debugger (PEB.BeingDebugged)
" |nstalls an exception handler (TEB.NtTib.ExceptionList)

-
23 F-Secure.%g

Example: Checking
For a Debugger

; Call IsDebuggerPresent ()

call [IsDebuggerPresent]

test eax, eax

; Do the same by checking PEB

mov eax, large fs:18h ; Offset 18h has self-pointer to TEB

mov eax, [eax+30h] ; Offset 30h has pointer to PEB
movzx eax, byte ptr [eax+2] ; PEB.BeingDebugged

test eax, eax

-
24 F-Secure.%g

Example: InstaIIinP
an Exception Handler

; Install a SEH exception handler
push offset my handler ; pointer to our handler
push fs:[0] ; pointer to old exception record

mov fs:[0], esp ; update TEB.NtTib.ExceptionList

-
75 F-Secure.%g

Exceptions

" Exceptions are to software what interrupts are to CPU

" An event that occurs during execution of a program that requires
execution of code outside the normal execution flow
= Windows exceptions match roughly to CPU exceptions, examples:
= EXCEPTION_INT_DIVIDE_BY_ZERO Devide by zero (0)
= EXCEPTION_SINGLE_STEP Debug (1)
= EXCEPTION_BREAKPOINT Breakpoint (3)
= EXCEPTION_ACCESS_VIOLATION Page fault (14)

-
26 F-Secure. ¢

Exception example

= What happens when this code executes in user-mode?

27

0042D9BO
0042D9B2
0042D9B3
0042D9B6
0042D9BB
0042D9BD
0042D9BE

XOr eax,eax

push eax

call dword ptr [myfunc]
mov ecx,80494678h

mov dword ptr [ecx],eax
push eax

call dword ptr [myfunc?]

—
F-Secure. Q¥

Handling an Exception
(Windows XP on x86)

1. CPU does address translation for 80494678h and sees the supervisor-
bit set for this page of virtual memory. A page fault exception (#PF) is
raised

= See “IA-32 Intel Architecture Software Developer’s Manual, Volume
3A” for details for exceptions and interrupts on x86

2. The page fault handler in the kernel, through the Interrupt Descriptor
Table (IDT), gets control. It passes control to the exception dispatcher.

3. Since the exception happened in user-mode, the dispatcher looks for a
user-mode debugger listening to a debug port.

4. The user-mode debugger gets a “first-chance” exception notification.

5. If the user-mode debugger does not handle the exception, the context
is adjusted so that the user-mode exception dispatcher will run next.

-
78 F-Secure.%g

29

Handling an Exception
(Continued)

. The user-mode dispatcher looks for any installed vectored

exception handlers (VEH) and calls them

. If none of the handlers were prepared to handle the exception, a

chain of structured exception handlers (SEH) is also called

. If the exception is still not handled, it’s re-raised and execution

goes back to the kernel exception dispatcher

. The user-mode debugger is sent a "second-chance” exception

notification.

—
F-Secure. Q¥

Handling an Exception
in Application Code

= Structured Exception Handling (SEH)

= Operating system service for applications to provide mechanism for
handling exceptions

" |ncode: __try/__except/__finally
= Exceptions are handled by the thread that caused the exception
= Many handlers can be registered to a stack-based handler chain

= Vectored Exception Handling (VEH)
= Expands SEH
= Not frame-based
= VVEH exception handlers take precedence over SEH chain
= See AddVectoredExceptionHandler() in MSDN

-
30 F-Secure.%g

31

VEH and SEH

(process-

specific)

SEH list
(thread-
specific)

Exception
Handler #1

Structured
Exception
Handler #1

Exception
Handler #2

Structured
Exception
Handler #2

—
F-Secure.%g¥

SEH Chain

next_handler handler1

handler_ptr

next_handler handler2

handler_ptr

-
37 F-Secure. %¢

Debuglger Features:
Single Stepping

= Single stepping means executing the application one instruction
atatime

= Avery typical debugger feature
" Usually implemented using EFLAGS.TF (Trace Flag)

»" When TF=1, the processor generates a debug exception for each
executed instruction

-
33 F-Secure.%g

Debugger Features:
SW Breakpoints

Used to break the execution of the target process at a specific address

Typically implemented using INT 3

= Debugger writes a byte with value OxCC (opcode for INT 3) to the memory
address

= Note: usually the debugger makes this transparent to the user, so the
modification is not visible in memory view

= Good:
= No limitation to the amount of software breakpoints

= Bad:
= Modifies the actual code bytes
= Cannot break on reads or write addresses, just execution

-
34 F-Secure.%g

35

Debugger Features:

HW Breakpoints

The CPU debug registers provide support for up to 4 hardware breakpoints

DRO-3 store the linear addresses to be monitored

DR7 configures the type of event

Break on execution, break on read, break on read/write
Length of data item to be monitored (1, 2 or 4 bytes)

Good:

Bad:

Does not modify code bytes

Limited number of breakpoints

Limited length of monitored data item (often you would like to break on a
range of bytes)

On Windows, target can read and change the debug register contents
through exception handlers

—
F-Secure. Q¥

Debugger Features:
Reading and Writing
Memory

= Debugger must be able read and write the virtual memory space
of the debuggee

" Done through normal Windows API functions
= ReadProcessMemory()
= WriteProcessMemory()

-
36 F-Secure.%g

Debugger Features:
Initial Breakpoint

" |nitial breakpoint = first time the debugger gets control of the target

= OllyDbg has three options for the initial breakpoint
= System breakpoint
» | oader breaks into debugger before any application code is run

" Entrypoint of main module
= First break is at the entrypoint as defined by the main module PE header

= WinMain (if known)
= Attempts to skip compiler-generated stub and break at high-level main

= With anything else than system breakpoint, application code can run
before you get control!
= See PE/COFF specification and TLS callbacks

= Support for TLS callbacks in Ollydbg 2.0

—
37 F-Secure.%g¥

Why Debug Malware?

" Faster to execute and step through code than just read it
= Especially for beginners it’s more convenient to “see what the code
does”
® Dealing with runtime packers

= A good, free debugger is sometimes all you need
® They all have a disassembler
= Ollydbg has pretty good code analysis features

= Also a matter of preference

= Sometimes a combination of static and dynamic analysis is good
= Browse through the application in a good interactive disassembler

= When you’ve spotted the interesting parts, you can see how they are
called and what they do in a debugger

= Tip: use plugin and MAP files to transfer names from IDA to OllyDBG

-
38 F-Secure.%g

Note on Debugging
and Security

= \We are now moving from reading unknown code into executing it!
= Even if you are very careful, eventually your debuggee will escape
" |f you ever debug potentially malicious applications, you need a safe
environment

= A machine you don’t care about (a virtual machine running on
anything important is not good enough...)

= No Internet connectivity (or very limited)
" Be extra careful with any portable media

-
39 F-Secure.%g

Debugging
Applications vs.
Debugging Malware

= When debugging normal applications, you typically have symbols and/or
source code

= Obviously not the case for malware

= Normal applications don’t actively prevent debugging
* Malware plays a lot of tricks to avoid dynamic analysis

" Most common reason to debug a normal application: analyze a bug
" Most common reason to debug malware: analyze functionality

Requirements for the tools are different!

-
40 F-Secure.%g

Anti-Debugging

" Anti-debugging is used to prevent debugging an application or
make it less convenient

" Attempt to prevent a debugger from being attached

" Attempt to detect an attached debugger and
= Exit
" Crash the application
= Behave differently

* Make debugging difficult by clearing breakpoints, causing
“noise” with exceptions, jumping to the middle of exported
functions to avoid breakpoints, ...

-
41 F-Secure.%g

Anti-Debugging
Techniques

" Documented API’s to check if a debugger is active

" |[sDebuggerPresent()
" CheckRemoteDebuggerPresent()

" Debugger-specific tricks

42

" Checking for objects created by the debugger

Registry keys

Files

Devices

Windows

Remote process memory scanning

—
F-Secure. Q¥

Anti-Debugging
Techniques

Checking data set in the process by the debugger
= PEB!IsDebugged
= PEB!NtGlobalFlags

Scanning for software breakpoints (OxCC)

Detecting through timing key points of execution
» See rdtsc instruction

Detecting virtual machines *)

" Processes, file system, registry: VMWare tools service, registry settings

" Memory: look for "VMWare”, IDT location

" Hardware: virtual hardware
CPU: non-standard opcodes, non-standard behaviour of existing opcodes
Lots and lots more...

*) http://handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf

-
43 F-Secure.%g

Anti-Debugging
Techniques

" Playing tricks with exceptions

" Flooding with exceptions
" Disabling hardware breakpoints through exception handlers

= Self-debugging
" Create a child process that attempts to debug the parent
= Split the execution into parent and child (debuggee), which
communicate through exceptions
= Other miscellanenous:
= NtQuerylnformationProcess() with ProcessDebugPort
» NtSetInformationThread() with ThreadHideFromDebugger

—
44 F-Secure.%g¥

Anti-Debugging:
Example 1

; Check from Process Environment Block (PEB)

; 1f a debugger is attached

mov eax, dword ptr fs:[18h] ; self-pointer to TEB
mov eax, [eax+30h] ; poilinter to PEB
movzx eax, byte ptr [eaxt2] ; PEB.BeingDebugged

test eax, eax

—
45 F-Secure. Q¥

Anti-Debugging:
Example 2

push offset handler handler:
push dword ptr fs:[0]
mov fs:[0],esp

XOr eax, eax

mov ecx, [esp+0Ch]
add dword ptr [ecx+0B8h], 2 ; skip div

div eax ; exception mov dword ptr [ecx+04h], 0 ; clean dr0

pop fs:[0] mov dword ptr [ecx+08h], 0O ; clean drl

add esp, 4

; continue execution mov dword ptr [ecx+0Ch], 0 ; clean dr2

H mov dword ptr [ecx+10h], 0 ; clean dr3
mov dword ptr [ecx+14h], 0 ; clean dré6
mov dword ptr [ecx+18h], 0O ; clean dr7

XOr eax, eax

ret

-
26 F-Secure.%g

.text:
.text:
.text:
.text:

.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:

Source:

47

004042F7
004042F9
004042FB
004042FD

004042D8
004042DD
004042DE
004042E0
004042E2
004042E2
004042E2
004042E3
004042E8
004042E9

push O

call dword ptr

mov edx,

imul edx, 10000h

push O0E1A8A200h

pop esi
add esi,

mov edi,

loc 4042E2:

lodsd
X0or eax,

stosd

loop loc 4042E2

0C2EA41h

Anti-Debugging:
Example 3

; eax = msvcrt! Clacos
; eax = 0x00321EAS8
; edx = 0x1EA80000

; debugger present: 0x0050A200 (r)
; not present: 0x0040A200 (rw)

; access violation if debugger present

https://www.openrce.org/blog/view/1043/SpyShredder_Malware_Spammed_on_OpenRCE (Rolf Rolles)

—
F-Secure. Q¥

Example 3 Explained

= msvcrt!_Ciacos calculates the arccos of the input
= Return value in floating point register, not eax!

= After the call to Ciacos,
" Eax = OxO0321EAS8 if a debugger is present
" Eax = Ox00321E98 if a debuggeris not present
" The value in eax is left there by the _Ciacos function as a side-
effect
" |t comes indirectly from an earlier call to calloc()

* The difference of Ox10 bytes in the pointers is caused by the
debugger enabling debug heap settings!

—
48 F-Secure. Q¥

49

Function in original

application

|-

Anti-Debugging:
Example 4

Control flow (jumps) replaced

with interrupts

—
F-Secure. Q¥

Anti-Debugging:
Example 4 (continued)

Parent process (debugger) Child process (debuggee)

Debug loop

{

Encrypted table of jmp
destinations

-
50 F-Secure.%g

51

Getting Around Anti-

Debugging

Make the debugger less visible to the target
= Clear out bits from PEB
= Disable setting of debug heap flags
= OllyDbg has extensions to automate this

Depending on the anti-debugging techniques used, change your

methods

= |f hardware breakpoints are cleared, try software breakpoints

= Attach to the process after it has unpacked itself, but before it exits

Step through the most problematic parts of code and work around

manually
= Tedious and time-consuming

—
F-Secure. Q¥

Resources

Ollydbg
= http://www.ollydbg.de

= Debugging Tools for Windows (Windbg)
= www.microsoft.com/whdc/devtools/debugging/default.mspx

» Structured Exception Handling, Vectored Exception Handling
= http://www.microsoft.com/msj/0197/exception/exception.aspx
® http://msdn.microsoft.com/msdnmaqg/issues/01/09/hood/

Windows Anti-Debug Reference (N. Falliere)
= hitp://www.securityfocus.com/infocus/1893

P. Szor, The Art of Computer Virus Research and Defense
= Chapter 15.4.4 — Dynamic Analysis Techniques
= Chapter 6.2.7 — Antidebugging

-
>y F-Secure.%g

http://www.ollydbg.de/
http://www.microsoft.com/msj/0197/exception/exception.aspx
http://msdn.microsoft.com/msdnmag/issues/01/09/hood/
http://www.securityfocus.com/infocus/1893

